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Abstract 
 

A benchmark on dynamic reliability taken from the literature is considered; though the 
behaviour of this system is dynamic and is described by continuous variables, we show that the 
system is suitable to an analytical solution, instead of simulation. The system consists of a tank 
containing some liquid whose level is monitored by a controller acting on two pumps and one 
valve, in order to avoid the liquid dry out or overflow. The reliability evaluation of the system is 
obtained by resorting to Generalized Stochastic Petri Nets (GSPN) and Fluid Stochastic Petri Nets 
(FSPN). FSPNs are hybrid models and differ from GSPNs by the presence of both fluid places 
(modelling continuous variables) and discrete places (containing a discrete number of tokens). 
GSPNs are used for the analytical solution of the benchmark, while the simulation on the FSPNs, 
is run with the aim of validating the analytical results.  
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1. Introduction 
 

 Several models for the reliability analysis of complex systems have been proposed in the 
literature, but most of them are not suitable to represent the system when its behaviour needs to be 
expressed by means of continuous variables (temperature, pressure, etc.), or when the system 
changes its configuration during its life. In the first case, we talk about hybrid models (or systems), 
in the second case, of Dynamic Reliability. In both cases, simulation is typically the most utilized 
technique to evaluate the system behaviour, while the analytical approach is often unpractical. 
However, in some cases an analytical approach can be afforded by resorting to a peculiar use of 
ordinary Generalized Stochastic Petri Nets (GSPN) [1], or to a rather new extension called Fluid 
Stochastic Petri Nets (FSPN) [2, 3, 4, 5].  

The advantages of using an analytical solution rather then a simulative approach are well 
known, and we show how to tackle a hybrid dynamic reliability problem by using the analytical 
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approach on GSPNs. The example is a benchmark taken from the literature [6], and consists of a 
tank containing some liquid whose level is influenced by a controller acting on three components 
(two pumps and one valve); the controller orders the components to switch on or off, with the aim 
of avoiding the dry out or the overflow failure condition. Several configurations of the system 
have been proposed and simulated in [6]; in this paper, we focus on the usual case of time and 
state independent failure rates, and we include the case with repairable components.  

FSPNs are a recently developed evolution of the Petri Nets that allow to augment a standard 
Petri Net by accommodating continuous variables, by means of new primitives called fluid places 
and fluid arcs. Fluid places contain a continuous level of fluid (instead of a discrete number of 
tokens) that flows in and out through fluid arcs (pipes). This extension increases the modelling 
power of Stochastic Petri Nets by providing a modelling framework in which discrete variables 
can be combined with continuous variables and the properties of the former depends on the latter 
and vice-versa. This new framework has proved to be useful to model systems where physical 
continuous quantities, such as the liquid level or temperature, need to be represented [6]. 

In this paper, the reliability evaluation of the benchmark proposed in [6], is first obtained by 
modelling and analyzing the system as a GSPN. Moreover, it is shown that by means of a suitable 
discretization procedure to be applied to continuous variables, GSPNs can cope with the problem. 
Then the analytical results are validated by means of simulation on the FSPN. The obtained results 
are also quite similar to those returned by applying the Monte Carlo simulation, and reported in [6]. 

 
2. The Case Study 

 
The system (Fig. 1) is composed by a tank containing some liquid, two pumps (P1 and P2) to 

fill the tank, a valve (V) to remove liquid from the tank, and a controller monitoring the liquid 
level (H) and acting on P1, P2 and V.  
 

 

 
 

Fig. 1 System scheme   
 
 
 
 
 
 
 
 



D. Codetta-Raiteri and A. Bobbio / International Journal of Materials & Structural Reliability Vol.4, No.1, March 2006, 65-77 

 67

 

 
Fig. 2 Possible state transitions of a component due to its failure; λ is the failure rate of the 

component 
 

Initially H is equal to 0, with P1 and V in state ON, and P2 in state OFF; since both pumps and 
the valve have the same rate of level variation (0.6 m/h), the liquid level does not change while the 
initial configuration holds. The cause of a variation of H is the occurrence of the failure of one of the 
components; a failure consists of turning to the state stuck ON or stuck OFF whatever is the current 
state of the component (see Fig. 2). The failure probability obeys the negative exponential 
distribution and the failure rate does not depend on the current state of the component. The failure 
rate of P1 is 0.004566 1/h; the failure rate of P2 is 0.005714 1/h; the failure rate of V is 0.003125 1/h.  
Table 1 shows how H changes with respect to the current configuration of the component states; 
the controller believes that the system is functioning correctly while H is inside the region between 
the levels denoted by HLA (-1) and HLB (+1). If H reaches HLB there is the risk of the liquid 
overflow; this event occurs when H exceeds the level denoted as HLP (+3). To avoid this 
undesired situation, the controller orders to both pumps to switch OFF and to the valve to switch 
ON, with the aim of decreasing H. If a component is stuck, it does not obey the controller order 
and maintains its current state.  

 
Table 1 H variation for every system configuration 

state of P1 state of P2 state of V effect on H level variation rate 
ON 
ON 
ON 
ON 
OFF 
OFF 
OFF 
OFF 

OFF 
ON 
OFF 
ON 
OFF 
ON 
OFF 
ON 

OFF 
OFF 
ON 
ON 
OFF 
OFF 
ON 
ON 

↑ 
↑↑ 
= 
↑ 
= 
↑ 
↓ 
= 

0.6 m/h 
1.2 m/h 

 
0.6 m/h 

 
0.6 m/h 
0.6 m/h 

 
 
The other undesired situation is the tank dry out; this happens when H is below HLV (-3); to 

avoid the dry out, when H reaches HLA, the controller orders to both pumps to switch ON and to the 
valve to switch OFF, with the aim of increasing H. Table 2 shows the control laws with respect to H.   

The failure of the whole system happens when the dry out or the overflow occurs. 
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Table 2 Control laws 
Boundary P1 P2 V 
H ≤ HLA 
H ≥ HLB 

ON 
OFF 

ON 
OFF 

OFF 
ON 

 
2.1 Some notions on GSPNs 
 
GSPNs are an extension of Petri Nets including timed transitions whose firing delay is a random 

variable. GSPN composing elements are places, timed transitions, immediate transitions, directed 
arcs and inhibitor arcs. Places (graphically denoted by circles) can contain a discrete number of 
tokens; immediate transitions (black rectangles) fire as soon as they are enabled, while timed 
transitions (white rectangles) fire after a random period of time which is ruled by the negative 
exponential distribution. Directed arcs are used to move tokens when a transition fires, while 
inhibitor arcs (ending with a small circle) can connect a place to a transition in order to disable the 
transition if the place is not empty.  

The first step of the analysis of a GSPN consists of generating the reachability graph, i. e. all the 
possible GSPN markings and transitions between markings. From the reachability graph, the 
corresponding Continuous Time Markov Chain (CTMC) can be obtained and analyzed [1]. 

 
2.2 Modelling the system as a GSPN 

 
The system has been modelled as a GSPN with the aim of performing analytically the reliability 

evaluation of the system. Fig. 3.a shows the GSPN modelling the system behaviour. The state of a 
component, for instance P1, is modelled by three places: P1on, P1off and P1stuck; when P1on 
contains one token (P1 is marked), P1 is ON; when P1off contains one token, P1 is OFF; if P1stuck 
contains one token, P1 is also stuck. The places P1on and P1off can not be marked at the same time.  

The component state variations due to a failure, are modelled by four timed transitions: 
P1failONON, P1failONOFF, P1failOFFON, P1failOFFOFF. The transition P1failONOFF for 
instance, models the transition from the state ON to the state stuck OFF by moving the token from 
P1on to P1off and putting one token in P1stuck. Since a component failure consists of turning to the 
state stuck ON or stuck OFF (see Fig. 2), all the four timed transitions have the same firing rate, 
equal to the half of the failure rate of P1. The failure of P2 and V is modelled in the same way.    

The liquid level has been discretized: nine intermediate levels have been modelled by a set of 
tokens inside the place named LEVEL; Table 3 shows the correspondence between the number of 
tokens in LEVEL and the liquid level H. The controller action on the component states with respect 
to H, is modelled by two immediate transitions for each component, connected to place LEVEL. In 
the case of P1, we have P1switchOFF and P1switchON; the first one fires when LEVEL contains at 
least five tokens (H ≥ HLB), and moves the token from P1on to P1off if P1 is currently ON. 
Analogously, P1switchON fires when LEVEL contains less than four tokens (H ≤ HLA), with the 
effect of moving the token from P1off to P1on if P1 is currently OFF. Both transitions are disabled if 
P1 is stuck. 

The liquid level variations are modelled by five timed transitions (Fill1, Fill2, Fill3, Fill4, 
Remove) which correspond to the component state configurations leading to a liquid level variation 
(Table 1). Each of these transitions can fire only while the relative state configuration holds; in this 
period, the firing rate of these transitions is equal to the level variation rate of the relative state 
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configuration indicated in Table 1. The effect of the firing is the addition (or the removal) of one 
token in LEVEL; in this way, we model the increase (or the decrease) of H.   

 
Table 3 Representation of H as the discrete marking of the place LEVEL in the GSPN,  

and as the fluid marking of the place L in the FSPN 
 

H 
 

Condition 
#tokens  

in LEVEL 
(GSPN) 

level 
in L  

(FSPN)
> +3 

+3 
+2 
+1 

0 
-1 
-2 
-3 

< -3 

overflow 
HLP 

 
HLB 

initial level 
HLA 

 
HLV 

dry out 

8 
7 
6 
5 
4 
3 
2 
1 
0 

 
6 
5 
4 
3 
2 
1 
0 

 
 

The dry out and overflow conditions are detected by two specific immediate transitions: Empty 
and Full respectively; the first one fires when LEVEL contains no tokens (H<HLV), and puts one 
token inside the place DRYOUT meaning that the dry out has occurred; the second one fires when 
LEVEL contains eight tokens (H>HLV), and puts one token inside OVERFLOW.  

To model the initial configuration, P1on, P2off and Von are marked with one token, while 
LEVEL contains four tokens corresponding to H=0.   
 

2.3 Some notions on FSPNs 
 

FSPNs are a new extension of Petri nets including the same elements of GSPNs with the addition 
of fluid places and arcs; fluid places contain a continuous fluid level and are suitable to represent 
continuous variables such as the temperature and the pressure. A fluid place can be connected to a 
timed transition by means of a fluid arc (pipe); while the timed transition is enabled to fire, some 
fluid is moved through the fluid arc, from or to the fluid place with respect to the flow rate associated 
with the fluid arc. Moreover, the firing of a timed transition may depend on the fluid level inside a 
fluid place: the Dirac delta function is used to make a transition fire when the fluid level reaches a 
certain value. 

The Dirac delta function returns 0 if its argument differs from 0, while it returns +∞ if its 
argument is equal to 0. So if we want a transition to fire when the fluid level inside the place L is 
equal to x, we have to set the firing rate of the transition to the function Dirac(L-x). 

 
2.4 Modelling the system as a FSPN 

 
In order to verify the correctness of the results (reported in section 2.5) obtained through the 

liquid level discretization in the GSPN model, we built also the FSPN model relative to the same 
system.  
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Fig. 3.b shows the FSPN model of the system, where some new elements appear: a fluid place 
named L modelling the liquid level in the tank and three fluid arcs with the shape of a pipe, 
modelling the action of the two pumps and of the valve on L; if we consider for instance P1, the fluid 
variation rate of the relative fluid arc is  0.6 ⋅ #P1on, where #P1on is the number of tokens inside 
P1on; in other words, some fluid is moved to L only while P1 is ON. Table 3 shows the 
correspondence between the liquid level in the tank (H) and the fluid level in L. 

The current state and the failure of a component are modelled in the same way as in the GSPN; 
the controller action on the components is now modelled by two timed transitions for each 
component. In the case of P1, they are P1switchOFF and P1switchON; the first one must fire when 
H reaches HLB, so its firing rate is the function Dirac(L-4) and it switches P1 to OFF if P1 is 
currently ON. The second transition must fire when H reaches HLA, so its firing rate is Dirac(L-2) 
and it switches P1 to ON if P1 is currently OFF. Both transitions are disabled if P1 is stuck. 

Two timed transitions named Empty and Full, detect the dry out and the overflow condition 
respectively; Empty must fire when H reaches HLV; this happens when L is equal to 0, so the firing 
rate of this transition is Dirac(L). Full must fire when H reaches HLP, so its firing rate is Dirac(L-6). 

 

 
Fig. 3 a) GSPN model of the system b) FSPN model of the system 
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2.5 Comparison of the results obtained on both models 
 
In order to evaluate the reliability of the system, we calculated analytically the dry out and 

overflow cumulative distribution function (cdf) on the GSPN of Fig. 3.a; this means computing the 
probability that the system is in the dry out or in the overflow condition respectively, as a function of 
the time. The cdf of the dry out is calculated as the probability of the presence of one token in the 
place DRYOUT; the cdf of the overflow is the probability to have one token in OVERFLOW. The 
GSPN model has been drawn and analyzed by means of the GreatSPN tool [7].  

 
Table 4 Dry out and overflow cdf: the columns labelled as “cdf” report the analytical results 

computed on the GSPN; the columns labelled as “min” and “max” report the bounds returned by the 
simulation on the FSPN 

time dry out 
min (FSPN) 

dry out 
cdf  (GSPN)

dry out 
max (FSPN) 

overflow 
min (FSPN)

overflow 
cdf (GSPN) 

overflow 
max (FSPN) 

100 h 
200 h 
300 h 
400 h 
500 h 
600 h 
700 h 
800 h 
900 h 

1000 h 

0.002845 
0.020963 
0.041510 
0.062215 
0.076387 
0.087603 
0.095643 
0.101947 
0.105926 
0.109810 

0.004463 
0.022077 
0.044846 
0.065827 
0.082568 
0.095014 
0.103939 
0.110227 
0.114622 
0.117689 

0.005355 
0.027037 
0.049890 
0.072385 
0.087613 
0.099597 
0.108157 
0.114853 
0.119074 
0.123190 

0.068572 
0.191723 
0.284943 
0.350404 
0.397253 
0.428575 
0.448382 
0.462773 
0.471251 
0.477266 

0.074208 
0.195182 
0.292146 
0.359876 
0.405374 
0.435689 
0.455953 
0.469595 
0.478857 
0.485200 

0.079228 
0.209277 
0.306257 
0.373996 
0.422347 
0.454625 
0.475018 
0.489827 
0.498549 
0.504734 

 
 

 
Fig. 4 Dry out cdf: the solid line shows the GSPN analytical results; the dashed lines show the 

FSPN simulation results 
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Fig. 5 Overflow cdf: the solid line shows the GSPN analytical results; the dashed lines show the 

FSPN simulation results 
 
On the FSPN model of Fig. 3.b instead, we performed 10000 cycles of simulation returning the 

lower and the upper bounds for the dry out cdf and the overflow cdf at the same mission times 
adopted for the analytical approach on the GSPN. The FSPN model has been drawn and simulated 
by means of the FSPNEdit tool [8]. 

The results obtained on both the GSPN and the FSPN are reported in Table 4; comparing the 
analytical results of the GSPN and the simulation results of the FSPN, we can observe that each 
probability value computed on the GSPN belongs to the range of values between the lower and the 
upper bound returned by the simulation on the FSPN for the same mission time; this situation is 
graphically shown in Fig. 4 (dry out) and in Fig. 5 (overflow).  

Our analytical results are also quite similar to those reported in [6], obtained via Monte Carlo 
simulation. This means that the analytical approach based on liquid level discretization and GSPN, 
returns acceptable results, considering that the simulation of the FSPN can deal with continuous 
variables, while in the GSPN we can deal only with discrete quantities. 

 
3. Modelling the Components Repair 

 
3.1 Repair policy 
 
A variation proposed in [6] to the initial version of the benchmark, deals with the possibility of 

repairing the failed (stuck) components. The reliability of the system can be improved in a 
considerable way by introducing the repair process. In the case of the benchmark, the controller 
discovers a failure by observing the liquid level H: if H is not inside the region of correct functioning 
(HLA<H<HLB), the controller suspects the occurrence of a failure, so it enables the repair process 
for the stuck components. The time to repair of a component is a random variable obeying a negative 
exponential distribution with the repair rate equal to 0.2 1/h. 

The repair is only allowed while the liquid level is outside the region of correct functioning 
(grace period); the effect of the repair consists of removing the stuck condition of a component. So, 
after the repair, a component can respond again and immediately to the controller orders changing its 
state if necessary. In order to have a significant grace period with respect to the repair time, the 
thresholds for the dry out and the overflow conditions, are now –5 and +5 respectively. 
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Fig. 6 GSPN model of the repairable system 

 
3.2 GSPN model of the repairable system 

 
With the aim of modelling the presence of the repair process in the system, and the new 

thresholds, we changed the discretization of the liquid level H, and added some new places and 
transitions in the GSPN model (Fig. 6); Table 5 shows the new correspondence between H and the 
number of tokens inside the place called LEVEL.  

 
 
 
 
 
 
 
 
 
 
 



D. Codetta-Raiteri and A. Bobbio / International Journal of Materials & Structural Reliability Vol.4, No.1, March 2006, 65-77 

 74

Tab. 5 Representation of H as the discrete marking of the place LEVEL in the GSPN, and as the fluid 
marking of the place L in the FSPN 

 
H 

 
Condition 

#tokens 
in LEVEL 
(GSPN) 

level 
in L 

(FSPN) 
> +5 

+5 
+4 
+3 
+2 
+1 

0 
-1 
-2 
-3 
-4 
-5 

< -5 

overflow 
HLP 

 
 
 

HLB 
initial level 

HLA 
 
 
 

HLV 
dry out 

12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

 
In the current GSPN, we have some new elements: the transition tooHIGH fires when LEVEL 

contains at least seven tokens (H ≥ HLB), and puts one token in the place dangerHIGH (enabling the 
immediate transitions modelling both pumps stop and the activation of the valve). In a similar way, 
the transition tooLOW fires when LEVEL contains less than six tokens (H ≤ HLA) and puts one 
token in the place dangerLOW (enabling the activation of both pumps and the valve stop). 

The presence of one token inside the place dangerLOW or dangerHIGH, means that we are in 
the grace period, so a timed transition modelling the repair, is enabled for each component; the firing 
rate of such transitions is the repair rate. In the case of P1, the transition P1repair removes the token 
from the place P1stuck. The repair is allowed  only during the grace period, so if H is back to the 
correct functioning region (six tokens inside LEVEL) as a consequence of a repair, the transition 
enoughLOW or enoughHIGH fires removing the token from dangerHIGH or dangerLOW 
respectively, and disabling the repairs.   

 
3.3 FSPN model of the repairable system 
 
As in the initial case, we verify the correctness of the analytical results on the GSPN by 

comparison with the simulation results computed on the FSPN model of the system (such results are 
reported in section 3.4). Fig. 7 shows the FSPN including the repair process; Table 5 shows the 
correspondence between the level in L and the new thresholds. 

With respect to the initial FSPN, we added some new elements in order to model the repair in the 
grace period: the firing rate of the timed transition tooHIGH is the function Dirac(L-6), so it fires 
when H reaches HLB putting one token in the place dangerHIGH which enables the immediate 
transitions modelling the relative control law on the components. The timed transition tooLOW 
instead, fires when H reaches HLA putting one token in dangerLOW, enabling the immediate 
transitions modelling the control law in this condition.  

The repair is modelled in the same way as in the GSPN, by three timed transitions enabled by the 
presence of one token inside the place dangerHIGH or dangerLOW. The grace period ends when H 
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is back to the correct functioning region; in this case, the transition enoughLOW or the transition 
enoughHIGH fires removing the token from dangerHIGH or dangerLOW respectively.  

The dry out occurs when the level in L is equal to 0 (transition Empty) or when it reaches 10 
(transition Full). 

 

 
Fig. 7 FSPN model for the repairable system 
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Table 6 Dry out and overflow cdf: the columns labelled as “cdf” report the analytical results 
computed on the GSPN; the columns labelled as “min” and “max” report the bounds returned by 

the simulation on the FSPN 

 
 

 3.4 Comparison of the results obtained on both models 
 
The probabilities of the dry out and of the overflow conditions, computed in the analytical way 

on the GSPN and by simulation on FSPN, are reported in Table 6 for a mission time varying from 50 
to 500 hours. As in the previous system configurations, the analytical results are coherent with those 
returned by the simulation. 

 
Conclusions 

 
Though simulation is the typical method to evaluate the reliability of hybrid and dynamic 

systems, in this paper we showed the way to adapt a form of discrete modelling and analysis such as 
GSPNs, to the benchmark proposed in [6]. The success of our approach has been verified by 
comparing the analytical results we obtained using GSPNs, with those returned by simulation on 
FSPNs (a formalism specifically studied to deal with continuous quantities) and with the results 
reported in [6]. So, we can conclude that the use of GSPNs is suitable in several cases of dynamic 
reliability analysis. 
 In [9] another version of the benchmark have been modelled and evaluated as a FSPN: the case 
with component failure rates expressed as a function of the liquid temperature assuming the 
presence of a heat source to warm the liquid in the tank. 
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time dry out 
min 

(FSPN) 

dry out 
cdf (GSPN) 

dry out 
max (FSPN) 

overflow 
min (FSPN) 

overflow 
cdf (GSPN) 

overflow 
max (FSPN) 

50 h 
100 h 
150 h 
200 h 
250 h 
300 h 
350 h 
400 h 
450 h 
500 h 

0.000000 
0.000000 
0.000000 
0.000008 
0.000120 
0.000246 
0.000246 
0.000312 
0.000312 
0.000521 

0.000010 
0.000062 
0.000156 
0.000280 
0.000419 
0.000561 
0.000697 
0.000825 
0.000941 
0.001045 

0.000015 
0.000070 
0.000296 
0.000792 
0.001080 
0.001354 
0.001354 
0.001488 
0.001488 
0.001879 

0.000380 
0.001844 
0.003442 
0.005891 
0.009762 
0.014259 
0.017787 
0.021807 
0.025474 
0.028588 

0.000967 
0.003168 
0.006015 
0.009238 
0.012682 
0.016254 
0.019893 
0.023558 
0.027221 
0.030860 

0.001620 
0.003956 
0.006158 
0.009309 
0.014038 
0.019341 
0.023413 
0.027993 
0.032126 
0.035612 
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